If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-160x+6000=0
a = 1; b = -160; c = +6000;
Δ = b2-4ac
Δ = -1602-4·1·6000
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-40}{2*1}=\frac{120}{2} =60 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+40}{2*1}=\frac{200}{2} =100 $
| (4x+2÷3)=(5x+3÷4) | | 3x-5+x+x+2=37 | | 1/2(3x-16)=4/5(x+3.4) | | 32/x=6/2 | | *5x-4=26 | | 2a-7=4/12 | | 7a+39=9a+17 | | ((2a-7)/4))=-1/3 | | S=-2t^2+14t+11 | | 11=2.4/x | | 2x^-5=13 | | 4x+3(10-x)=50 | | 24-2r=12 | | F(x)=-3x^+75 | | -4x^-7=-11 | | 9/2x+4=48-x | | 398.4=0.83(x) | | 15x=5000+6.5x | | 4x2+7x−2x(2x−5)=17 | | 8.50x=5000 | | 8n+10n+30=10n+14n | | n+1=1 | | 15x=5000+6.5 | | H=-28t^2+56+4 | | H=-28t^2+56+5 | | 10x=5000+5x | | 50=16x+2+9x-12 | | 7+4(2m-1)=8m+11 | | 9/10=x-6/9 | | 22+5x-5+4x=34 | | 2(x-3)-51=6-7x | | (2w+11)(w-5)=0 |